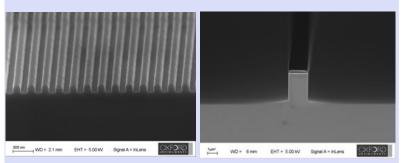
Oxford Instruments Plasma Technology

123.7 mm


Customer Technical Update

December 2024

Device Enabling Processes

Control of features allowing flexibility in device design **enabling efficient low optical loss, low damage devices** ideally suited for AI data centre applications

InP feature etch for EML and DFB lasers

- Minimal trenching
- Vertical profiles
- Smooth sidewall (low optical loss)
- Low damage (Hydrogen free)

Cost of Ownership

High throughput and low cost of ownership Process Yield

 Hot electrostatic chuck (option 210 °C/250°C) for fully automated single wafer processing

• Excellent process repeatability and tool to tool transfer

Wafer scaling 50mm – 100 mm as POR

150 mm InP first in fab

Throughput

- >4000 wpm 5 µm InP etch
- >1 μm/min InP etch
- 2500 µm between cleans with polymer free chemistry

The OI Difference

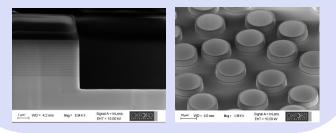
- Market leader in InP based
 processing
- Largest install base including market leading companies
- **First in Fab** fully automated 6" single wafer processing
- Extensive process **expertise** applied to solve challenges and enable next generation devices

PRIVATE AND CONFIDENTIAL

© Oxford Instruments 2024

GaAs VCSELs Enabling More Good Wafers Today at a Lower Cost

Device Enabling Processes


Flexible feature architecture and **highquality atomic layer deposition (ALD) moisture barriers** ensuring every device is produced as designed for low optical loss, high yield and reliability

GaAs/AlGaAs mesa etch

- Minimal footing and zero trenching
- Vertical or sloped profiles
- Residue free sidewalls

ALD moisture barrier

 High quality SiN_x and Al₂O₃ ALD layers with very low moisture penetration

Cost of Ownership

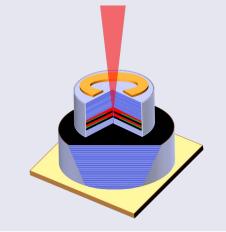
High throughput and low cost of ownership

Process Yield

- Fully automated single wafer processing
- Excellent process repeatability
 and tool to tool transfer

Interleave cleans during mesa
 etch to reduce cleaning overheads

Wafer scaling


100 mm and 150 mm as standard

Mesa Etch Throughput

- >2000 wpm 4.5 μm mesa etch
- >600 nm/min GaAs etch
- 7450 µm between cleans

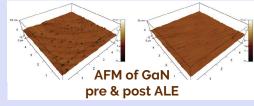
The OI Difference

- **Production qualified** processing at market leading companies
- Low footing **mesa etch process** to enable complex geometries
- Unique **etch and ALD process** capabilities to enable next generation devices

© Oxford Instruments 2024

PRIVATE AND CONFIDENTIAL

GaN Power Electronics & RF Enabling More Good Wafers Today at a Lower Cost



Device Enabling Processes

Control of interfaces for improved device performance

Atomic Layer Etch (ALE): AlGaN, GaN

- Surface smoothing post etch
- Low damage controlled remote
 plasma etch

Atomic Layer Deposition (ALD): SiO_x, AlO_x, HfO_x, AlN, SiN_x

- Native oxide removal by plasma pretreatment
- Engineered material properties such as tuneable crystallinity nitrides
- Low damage plasma processing from innovative patented plasma source

Cost of Ownership

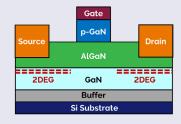
High throughput and low cost of ownership

Process Yield

precise ≤1 nm etch depth

Patented endpoint for

control


Wafer scaling 150 mm and 200 mm with rapid reconfiguration

Throughput

- ALD Al₂O₃ passivation
 >5000 wpm CoO reduced by 75% compared to benchmark remote plasma
- ALE AlGaN etch > 2500 wpm

The OI Difference

- ALD and ALE for WBG materials qualified and ramping in p-GaN. cascode and MISHEMT devices
- Atomfab ALD process of record in HVM GaN HEMT manufacturing
- **Range of HVM** deposition and etch solutions for multiple device design and integration schemes
- **Qualified partner** solving key technology challenges at the atomic-scale for next generation GaN device manufacturing

© Oxford Instruments 2024

PRIVATE AND CONFIDENTIAL

SiC Power Electronics

New processes to greener, better SiC devices at lower cost

•

Device Enabling Processes

Contactless polishing solution to prepare epi-ready substates

Plasma Polish Dry Etch

Cost effective, clean and green HVM substrate polishing solution designed to remove sub-surface damage.

Interface engineering to improve device characteristics

Bias Pulsed ALE: Improved interfaces

Fast atomic layer etching to prepare defect-free interfaces.

ALD: Conformal dielectrics

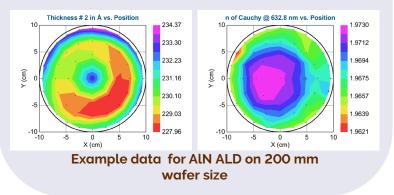
Defect-free conformal dielectrics for higher performing MOS interfaces.

Cost of Ownership

High throughput and low cost of ownership

Process Yield More reliable and improved process control

Wafer scaling 150 mm and 200 mm with rapid reconfiguration


Clustering of Technologies

Ability to combine multiple material processing technologies in a singlecluster tool.

The OI Difference

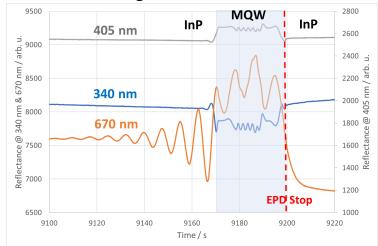
- Plasma Polish process qualified on MOSFET devices
- ALD and ALE process ready for customer demo
- Qualified partner solving key technology challenges on the atomic-scale for next generation in SiC device fabrication

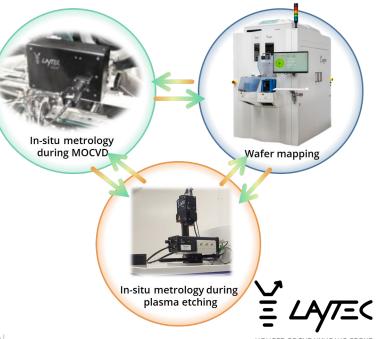


PRIVATE AND CONFIDENTIAL

© Oxford Instruments 2024

Device enabling metrology


- In-situ metrology for plasma etch monitoring enabling reproducible and accurate endpoint detection
- Customizable system based on three wavelength operations suitable for different material systems, e.g. GaN, GaAs, InP
- Measurement of residual thickness and etch depth, detection of interface with nm-accuracy
- Automated endpoint algorithms
- > High resolution camera module


Cost of Ownership

- Fully automated and integrated endpoint detection for dry etch process control and high yield
- Excellent measurement precision and reproducibility for compensation of etch rate drift
- Endpoint for accurate etch depth control down to ≤ 1 nm
- Interface detection enabling switch from slow to fast etch processes, reducing manufacturing costs

The LayTec difference

- Market leader in in-situ and in-line optical metrology for wide range of thin film processes
- Expertise in optics, thin film application and physical modeling
- Cutting edge analysis features
- Connected metrology

Oxford Instrument Customer Technical User Meeting | LayTec AG | info@laytec.de | CONFIDENTIAL